Verification of Analog Circuits

- **Motivation**
 - Up to 70% of the design time is taken by verification issues
 - Verification of analog signals (continuous in time and value) is very time consuming

- **Goal**
 - Development of basic elements of an integrated methodology for verification of analog circuits
 - To verify the applicability of the methods for an industrial assignment
 - **Scientific and technical goals**
 - Development of methods and rules for the creation of models which can be simulated quickly and also sufficiently describe many physical effects (e.g. mixed discipline or temperature).
 - Investigation and development of formal verification methods for analog circuits, i.e. model checking + equivalence checking.
 - Development of methods for assertion-based verification, and of formal procedures for performance and tolerance verification.
 - Implementation of an integrated methodology for multilevel verification of analog systems considering mixed-signal/mixed-domain aspects and using the aforementioned points.

- **Expected economical benefit**
 - Increase the verification efficiency by minimum 30%
 - Reduce the number of redesigns by 20%
 - Improve the product quality

Verification oriented modeling

- **Simulation performance**
 - Examination of modeling approaches and simulation algorithms
 - Reduction of simulation time by optimized behavioral models with sufficient accuracy

- **Verification oriented modeling for very high temperatures**
 - Determination of the behavior of power transistors at very high temperatures (300°C)
 - Adoption of the transistor model for the verification at very high temperatures

Formalized verification

- **Model checking**
 - Investigation and development of model checking algorithms for analog circuits
 - Development of a suitable specification language for analog circuits

- **Equivalence checking**
 - Investigation and development of equivalence checking algorithms for two analog circuits and models respectively
 - Determination of requirements for behavioral modeling

Multi level verification

- **Application-oriented verification of complete ICs**
 - Development of efficient task and application specific verification strategies on block level and for complete ICs
 - As possible a complete verification coverage

- **System level co-simulation**
 - Development of methods to accelerate the verification on system level by co-simulation
 - Consideration of different abstraction levels
 - Application of different languages/simulators
 - Mapping of analog circuit parts in programmable hardware and coupling of this hardware with AMS simulators

- **Application of models across abstraction levels**
 - Development of methods for functional circuit test across all abstraction levels
 - Consideration of process and operational tolerances on different abstraction levels